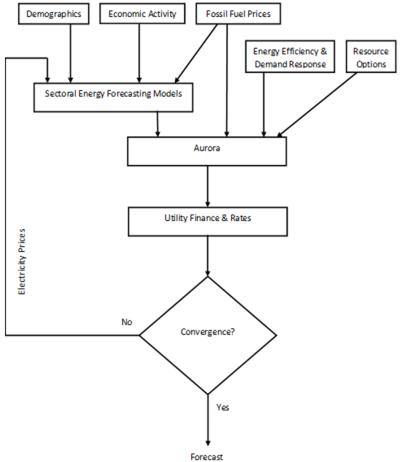
SUFG ELECTRICITY PRICE & DEMAND MODELING - IMPACT OF ELECTRIC VEHICLES

Douglas J. Gotham, SUFG Director

Presented to the 21st Century Energy Policy Development Task Force


August 24, 2021

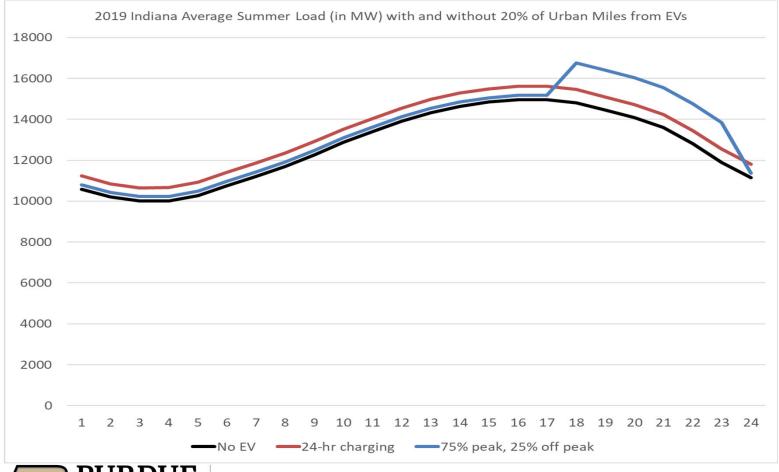
SUFG Forecasting Modeling System

- Changes in load affect future resource additions and fuel/maintenance costs
- Changes in resource additions affect revenue from return on investment
- Changes in revenue requirements affect electricity prices
- Changes in electricity prices affect demand for electricity

How Significant Will EVs Be?

If 10% of urban miles were EVs? If 10% of total miles were EVs?

- Rough analysis based on 2019 data from Federal Highway Administration and Energy Information Administration
- A number of assumptions were made, so focus on the magnitude of the impacts rather than the specific numbers
 - Miles/kWh for light duty vehicles (LDV) based on typical EPA ratings
 - Miles/kWh for medium duty vehicles (MDV) and heavy duty vehicles (HDV) based on mid-range value from ORNL report
- Share of miles traveled by LDV vs MDV+HDV was not available at the state level, so national shares were used


Increase in Electric Load Due to Increase in EVs

10% of Urban Miles Traveled	% of Residential Load	% of Commercial Load	% of Total Load
LDV	3.2%		1.0%
MDV+HDV		6.9%	1.8%
LDV+MDV+HDV			2.8%

10% of Total Miles Traveled	% of Residential Load	% of Commercial Load	% of Total Load
LDV	5.4%		1.6%
MDV+HDV		12.7%	2.9%
LDV+MDV+HDV			4.5%

The Impact Depends on When the EVs are Charged

Price Impact

Depends on how costs change relative to load change

- $Price = \frac{Required\ Revenue}{Electricity\ Sales}$
- If electricity sales grow faster than revenue requirements, prices decrease
- If revenue requirements grow faster than electricity sales, prices increase
- If EVs result in substantial new resource requirements (as in 75/25 example) prices would be higher than if they do not (as in 24 hour charging)
- SUFG ran a scenario with a high level of EV for LBNL's distribution analysis (for IURC report to the Task Force)
 - Price impacts were small

Doug Gotham gotham@purdue.edu 765-494-0851 https://www.purdue.edu/discoverypark/sufg/

